

山東冠熙環(huán)保設(shè)備有限公司
主營產(chǎn)品: 通風(fēng)機(jī)
低壓通風(fēng)機(jī)批發(fā)-除塵設(shè)備通風(fēng)機(jī)-低壓通風(fēng)機(jī)
價格
訂貨量(件)
¥1999.00
≥1
店鋪主推品 熱銷潛力款
祺祴祻祵祳祷祹祶祵祸祶







以4-73No.8D 離心風(fēng)機(jī)為研究對象,對比了適配進(jìn)氣箱的兩種不同導(dǎo)流器,并測試了噪聲;一種包含復(fù)雜形狀進(jìn)氣箱與旋轉(zhuǎn)葉輪一體的通風(fēng)機(jī)的算法,可以很好的揭示斜流風(fēng)機(jī)內(nèi)部流動的特征;對電站鍋爐通風(fēng)機(jī)進(jìn)氣箱三維粘性流場進(jìn)行了數(shù)值模擬,分析了進(jìn)氣箱內(nèi)氣體流動特性的影響,并對進(jìn)氣箱的設(shè)計和改造提出了建議;Li Jingyin對有無進(jìn)氣箱的軸流風(fēng)機(jī)進(jìn)行了數(shù)值分析,并著重分析了進(jìn)氣箱內(nèi)部的流動對軸流風(fēng)機(jī)效率下降的影響。本文基于CFX 軟件,對有無進(jìn)氣箱兩種離心風(fēng)機(jī),分別建立了數(shù)值計算模型,進(jìn)行了三維數(shù)值模擬分析,研究通風(fēng)機(jī)其內(nèi)部流場特性。并與實驗的實測數(shù)據(jù)進(jìn)行對比分析,驗證數(shù)值計算結(jié)果的合理性。本文采用一種特殊設(shè)計的進(jìn)氣箱,這種形式的進(jìn)氣箱削弱了氣流在90°轉(zhuǎn)彎過程中的能量損失,在轉(zhuǎn)彎處氣流更加的平穩(wěn),加速過程更加的均勻。該進(jìn)氣箱進(jìn)口為矩形,出口為與集流器相連的圓形。通過solidworks 建立的兩種形式的三維模型,兩種模型除進(jìn)氣箱外其他尺寸相同。
通風(fēng)機(jī)對比分析
在額定轉(zhuǎn)速下, 假定風(fēng)機(jī)進(jìn)出口處截面上動壓靜壓均勻分布,對風(fēng)機(jī)進(jìn)口、出口壓力及壓差,集流器進(jìn)出口壓力及其壓差進(jìn)行統(tǒng)計。取點方法:在截面中心為軸心,周邊均勻取了20 個點,之后計算取其平均值,可以看出,同流量下,加米字形集流器的靜壓和全壓差分別為-4 389.0 Pa 和-2 252.9 Pa,而普通圓弧形集流器的壓差為-982.9 Pa 和-32.1 Pa,相比可以看出,通風(fēng)機(jī) 加米字形集流器導(dǎo)流效果比普通圓弧形集流器好。但是同流量下,普通圓弧形集流器比加米字形集流器風(fēng)機(jī)壓差大,有效值大2 366 Pa,風(fēng)機(jī)全壓差加米字形比普通圓弧形小2 350.8 Pa,減少的這部分能量用于摩擦發(fā)熱。說明集流器經(jīng)過改造提高了粉塵流的導(dǎo)流能力,提高了風(fēng)機(jī)的性能。
本文對掘進(jìn)工作面通風(fēng)機(jī)集流器結(jié)構(gòu)進(jìn)行了改進(jìn)研究。并對改進(jìn)前、后的結(jié)構(gòu)的集流器導(dǎo)流效果做了理論分析。然后應(yīng)用Fluent 流體軟件對其進(jìn)行了數(shù)值建模分析, 充分認(rèn)識離心分機(jī)內(nèi)部流場流體的流動規(guī)律,并得到集流器及整個風(fēng)機(jī)的壓力云圖,截面所受阻力云圖,并取點做了統(tǒng)計分析。研究結(jié)果表明:通風(fēng)機(jī)加米字形集流器使集流器進(jìn)出口壓差增加,明顯地起到對粉塵流場的導(dǎo)流作用。但是集流器由于增加米字形支撐架,造成集流器截面的摩擦力增大,消耗了風(fēng)機(jī)的一部分動能。但對大型除塵離心風(fēng)機(jī)總體來看,采用該結(jié)構(gòu)大大減少制造難度和加工成本,提高了經(jīng)濟(jì)效益。
通風(fēng)機(jī)性能試驗原理及其裝置為了驗證修正后數(shù)值計算模型的準(zhǔn)確度,對原風(fēng)機(jī)的不同工況氣動性能試驗。將修正前后數(shù)值計算模型預(yù)測原型機(jī)性能結(jié)果與試驗值作對比分析,由數(shù)據(jù)可知,采用標(biāo)準(zhǔn)k-ε 模型預(yù)測的風(fēng)機(jī)性能曲線較試驗值存在一定誤差,其較大誤差值達(dá)9.5%,修正的k-ε 模型,各流量工況下通風(fēng)機(jī)出口靜壓計算值與試驗值吻合,其性能曲線趨于重合,兩者誤差值明顯減小,且較大誤差降低至3%,充分驗證了所采用的數(shù)值計算模型修正方法的可行性,同時為下文通風(fēng)機(jī)性能的準(zhǔn)確度和可靠性預(yù)測提供支撐。設(shè)計原理分析原風(fēng)機(jī)蝸殼內(nèi)壁型線采用的是傳統(tǒng)蝸殼型線設(shè)計方法,即不考慮壁面粘性摩擦的影響,氣流動量矩保持不變,運用不等邊基圓法繪制的近似阿基米德螺旋線。而實際流動過程中,氣體粘性作用常導(dǎo)致其速度在過流斷面上呈現(xiàn)的分布不均勻現(xiàn)象。
對于低速小型多翼離心風(fēng)機(jī)而言,由于氣體流道狹窄,受粘性作用的影響,風(fēng)機(jī)內(nèi)壁面邊界層分離加劇,經(jīng)過葉輪加速的氣體流速沿蝸殼徑向方向逐漸減小,而在通風(fēng)機(jī)蝸殼出口處,由于同時受到蝸舌結(jié)構(gòu)和蝸殼壁面的影響,其流速為管道流速度分布,受粘性作用的影響,蝸殼內(nèi)流體于整個流道空間內(nèi)呈現(xiàn)速度分布不均勻的現(xiàn)象,因此在實際流動過程中,流體動量矩并不是不變的,而是隨流動的進(jìn)行不斷減小,故基于動量矩守恒定律設(shè)計的傳統(tǒng)蝸殼型線存在動量修正的必要。改型設(shè)計方法由于氣體粘性力無法通過簡單的公式運算獲得,且其大小受氣體速度的影響,因此本文采用一種簡單化的求解方法,即基于傳統(tǒng)不等邊基圓法,通風(fēng)機(jī)運用改進(jìn)后的k-ε 模型對原風(fēng)機(jī)進(jìn)行數(shù)值模擬,設(shè)置如圖8 所示的4 個監(jiān)測截面,其方位角φ 分別為90°、180°、270°、360°。通過Fluent 后處理計算得出蝸殼壁面區(qū)域于以上4 個截面處所受粘性力大小Fν ,測量力矩中心至力原點距離R,由額定工況下風(fēng)機(jī)總質(zhì)量流量q 計算得單位質(zhì)量流體所受黏性力矩平均值m FR / q。
